

DRIVING IMPACTS OUR LIVES

In the US...

200 million people spend on average
80 mins a day driving. Each year they rack up
3 billion miles and have
11 million accidents resulting in
30,000 deaths.

Drive behavior impacts ... Safety, Fuel consumption, Insurance risk, Maintenance cost, and many more ...

DRIVING AN MONITORING - TODAY!

Driving

Accurate Data

3500

3550

High cost

Difficult installation

Painful handling

No hardware

No Bluetooth

No power drain

WHO NEEDS THIS DATA?

Insurance	Usage Based Insurance, e.g. good driver discounts.					
Fleet Tracking	Safety, fuel efficiency, e.g. "How is my driving?"					
Teen Safety	Parental Monitoring & Education					
Auto Sharing / Rental	Car2Go, others good driver discount					
Taxi / Livery	How safe is the driver? e. g. Uber, Lyft,					
Others	Contextual Marketing, Traffic Data, IRS Reporting,					

ADDRESSABLE MARKET (US)

Insurance	 \$ 540M in user acquisition \$ 554M in user retention 	(16M switch, \$30 per switch) (23.1M users, \$24 per year)
Fleet Tracking	• \$ 72M in small fleet (5-14)	(3M vehicles, \$24 per year)
Teen Safety	• \$ 240M in parental monitoring	(5M teens, \$48 per year)
Auto Sharing / Rental	• \$ 90M in drive scoring	(90M contracts, \$1 per rental)
Taxi / Livery	• \$ 55M in drive scoring	(220M rides, \$0.2 per ride)

License fees of \$24 - \$48 per user per year. One time payment of \$1 - \$30 per drive score.

Lukas Kuhn *Co-founder*

Qualcomm, Context Aware PARC, Embedded Reasoning Client Vela, Direct Marketing

Ph.D. @ Tech. Uni. of Munich (Computer Science)

Mobile application development and optimization, Lean Software Process, Artificial Intelligence, Embedded Reasoning

TEAM

Lenny Grokop Co-founder

Qualcomm, Context Aware UC Berkeley, Wireless Foundations NEC Research, Mobile R&D

Ph.D. @ UC Berkeley (EECS)

Machine Learning, Statistics, Signal Processing, Scientific Computing, Embedded software development and optimization

EVAN PATTON Rockstar

Qualcomm Intern, Context Aware **RPI**, Tetherless World Constellation **RPI**, Semantic Web

Ph.D. @ RPI (Computer Science)

Mobile application development and optimization, Infrastructure & Big Data Development and Deployment

RANDY HOLMES Advisor - Telematics Auto-insurance telematics strategist w/ 5+ years in industry Dir. Qualcomm & Hughes Telematics

TRACTION

Insurers:

- Top 10 Insurer: Currently in 2 month trial for internal testing. Fits with their goals as potential licensee

 moving towards paid pilot.
- Top 10 Insurer: Experiment surpassed acceptance benchmark. 50-user trial to begin mid-March. Fits with their goals of releasing Snapshot Mobile product to complement current hardware in 2014 and later replace
- **Top 10 commercial insurers:** Engaging 3 of the top 10 commercial insurers for low cost mobile solution for driver risk monitoring

Service Providers & Fleet:

- **Top 10 Insurer Service Provider:** 1 month trial for internal testing begins Feb 24.
- **Top 10 Fleet Provider:** High level of interest to trial our solution. On site meeting on 25th Feb.
- **Top 20 Fleet Provider:** Discussions ongoing, leading toward trial. Fits with their goals of licensing mobile telematics technology to offer in full service product to numerous insurers

Other engagements:

D Multiple parties interested to trial our solution, e.g. parking service, car rental

ZENHAVIOR PRODUCTS

Overpass by Zenhavior

- Fully-functional, drive-monitoring application
- Currently used to run trails and demonstrations
- Enables users to view list of drives
- Visualizes drive events and details on map view

Software-Developer Kit (SDK) by Zenhavior

- SDK with rich drive monitoring features
- Offered to third parties to build their applications.
- Features configurable and data upload can be enabled
- Currently used by Overpass.

Data backend by Zenhavior

- Scalable backend hosted in the clouds (AWS)
- Offers data APIs for third parties
- Enables cross user analytics
- Currently used to run trails and demonstrations

ZENHAVIOR PRODUCT

Accurate detection of hard accel/ brake/corner

Speed relative to posted limit

Driving vs. Transportation

SPEED LIMIT

> Calling/texting/ device usage while driving

ZENHAVIOR RPRODUCT

Minimal Battery Impact

Extremely low power drive start detection

Limited resource usage during drives

- Low GPS usage
- Optimized use of all other resources

Overall average battery consumption **comparable to cellstandby** for a typical user

TELEMATICS DATA

Drive data delivered @ 4 samples/second (configurable):

- □ Linear, lateral and vertical G-forces of vehicle
- Time of day, Date, Time zone, elapsed duration of trip
- Precise location on route in terms of route leg # and fraction along this route leg
- Road Name
- Occurrence of hard brakes, accelerations, right corners, left corners
- Occurrence of right turns, left turns
- Speed, Typical Speed Limit, Cumulative trip mileage
- Text message sent, Phone call status, Device Usage status, Foreground app usage
- Unusable data for driving behavior (due to device usage or otherwise)

DATE	TIME	ELAPSED TIME	LAT	LONG	LEG	LEG FRAC	ROAD NAME	SPEED	MILEAGE	LINEAR G_FORCE	LATERAL G_FORCE	VERTICAL G_FORCE	DATA UNUSABLE	RIGHT TURN	LEFT TURN	HARD BRAKE	HARD ACCEL	HARD RIGHT CORNER	HARD LEFT CORNER
2/6/2014	12:12:33	453000	32.8263	-117.2794	353	0.609	Palomar Ave	7.19	5.082	-0.23	0.03	-0.02	0	0	0	FALSE	FALSE	FALSE	FALSE
2/6/2014	12:12:33	453250	32.8263	-117.2794	354	0.962	Palomar Ave	5.91	5.083	-0.26	0.05	-0.02	0	0	0	FALSE	FALSE	FALSE	FALSE
2/6/2014	12:12:33	453500	32.8263	-117.2795	356	0.347	Palomar Ave	4.55	5.085	-0.27	0.05	-0.03	0	0	0	FALSE	FALSE	FALSE	FALSE
2/6/2014	12:12:34	453750	32.8263	-117.2795	357	0.402	Palomar Ave	2.92	5.085	-0.32	0.07	-0.02	0	0	0	TRUE	FALSE	FALSE	FALSE
2/6/2014	12:12:34	454000	32.8263	-117.2795	358	0.002	Palomar Ave	1.03	5.086	-0.37	0.10	-0.04	0	0	0	TRUE	FALSE	FALSE	FALSE
2/6/2014	12:12:34	454250	32.8263	-117.2795	358	0.006	Palomar Ave	0.00	5.086	-0.37	0.09	-0.05	0	0	0	TRUE	FALSE	FALSE	FALSE
2/6/2014	12:12:34	454500	32.8263	-117.2795	358	0.006	Palomar Ave	0.00	5.086	-0.37	0.09	-0.05	0	0	0	TRUE	FALSE	FALSE	FALSE
2/6/2014	12:12:35	454750	32.8263	-117.2795	358	0.006	Palomar Ave	0.00	5.086	-0.33	0.08	-0.06	0	0	0	TRUE	FALSE	FALSE	FALSE
2/6/2014	12:12:35	455000	32.8263	-117.2795	358	0.006	Palomar Ave	0.00	5.086	-0.28	0.07	-0.04	0	0	0	FALSE	FALSE	FALSE	FALSE
2/6/2014	12:12:35	455250	32.8263	-117.2795	358	0.006	Palomar Ave	0.00	5.086	-0.24	0.06	0.00	0	0	0	FALSE	FALSE	FALSE	FALSE
2/6/2014	12:12:35	455500	32.8263	-117.2795	358	0.006	Palomar Ave	0.00	5.086	-0.18	0.04	-0.03	0	0	0	FALSE	FALSE	FALSE	FALSE

TRIAL DATA

Sample drive trip from trial data collected

* timely nearby events only visualized once on map

DATA ACCURACY

120 ∞ 100 # Hard Brakes from Smartphone 00 Each data point 80 corresponds to Ο one drive trip 0 60 40 $R^2 = 0.97$ 20 40 100 20 60 120 80 0 # Hard Brakes from **ODBII**

Correlation between Overpass and OBDII

Predictive power evaluated across 261 drives trips with multiple phone models, vehicles and device positions. Hard braking event defined as >11 kph speed drop in 1 second.

WHY SO HARD?

Smartphones are NOT designed for this Individual Sensors are NOT accurate Each phone is different – e.g. chipsets Device can be anywhere in car Every data point consumes power

The NEED for Sensor Fusion

SUMMARY

100's of millions will benefit from drive monitoring in the near future

Big opportunity and need in multiple industries

Hard problem on a smartphone, uniquely positioned team to solve

Clearly demonstrable solution working today

Early customer traction

Fully bootstrapped to date

Raising seed funding now

TOWERS WATSON, TRENDS (2013)

61% are willing to pay \$3.75 - \$7.50 / month for value added services

AUTO INSURANCE MARKET

- Usage based insurance (UBI) enables dynamic pricing based on driving behavior (good driver discount programs).
- 70% of NA property casualty insurers engaged in UBI
- Progressive Snapshot (UBI) has over 1.2M subscribers
- Global market 3.6 million subscribers in 2012 to 89 million by 2017
- Global insurance telematics market predicted to reach \$5.2 billion by 2017

Great drivers get GREAT RATES with Snapshot®

TARGET MARKET

Target drivers under 25 years

- These drivers are tech-savvy and have greatest financial incentive
- Fast adoption: 13% are under 25, but account for ~20% of the telematics market due to disproportionately high premiums
- Average auto-insurance rate 16-24 in 2010 was ~\$2500
- Average increase in premiums after a teen is added to a policy is 156%

HARDWARE TELEMATICS

How UBI currently works...

The current experience is painful...

Hardware is NOT free. Costs \$120/year per customer in device procurement, data offloading, shipping, inventory & support.

Lead generation is slow and costly. Blanket mailing hardware is infeasible!

We can help you get out of the hardware business!

MOBILE TELEMATICS

The direction UBI is heading...

The desired experience...

Low cost. No costs for procurement, data offloading, shipping, inventory.

Good user experience. No battery drain, no user interaction

Hardware-accurate data. hardware solution. Precise drive features such as mileage, g-forces, etc. in order to compute risk.

GO TO MARKET STRATEGY

	Industries	Current Approach	Business Model
Existing High Value Applications	Auto insurance, Fleet Tracking, Driving Behavior	Smartphones with external triggers or high battery usage	License to data engine to enhance existing programs
New High Value Applications	Auto insurance, Fleet Tracking, Parental monitoring	After market hardware solutions	Develop applications as appropriate and license data engine.

LEAD GENERATION

ZENHAVIOR

- □ Make young drivers safer and get them affordable auto-insurance.
- Telematics-based auto-insurance brokerage (disruptive)
- Smart-phone based driver monitoring and analytics (highly scalable)

TARGET MARKET

Target drivers under 25 years

- These drivers are tech-savvy and have greatest financial incentive
- Fast adoption: 13% are under 25, but account for ~20% of the telematics market due to disproportionately high premiums
- Average auto-insurance rate 16-24 in 2010 was ~\$2500
- Average increase in premiums after a teen is added to a policy is 156%

LEAD GENERATION - FINANCE

- 189M auto-insurance contracts in the US:
- 11% switchers per year + new drivers
- 2,500 US\$ average premium for 16-24 year olds (US average 839 US\$)
- 13% segment share (16-24 year olds)
- Commissions: 15%-20% (first year) & 10%-14% (renewal) (industry standard).
- **ZENHAVIOR 5%** market share by 2019, total market size is \$1.5 billion.

GO TO MARKET STRATEGY

